
18-819F: Introduction to Quantum Computing 
47-779/785: Quantum Integer Programming 

& Quantum Machine Learning

Deep Learning  

Lecture 04
2022.09.14.



• Relationship of artificial neurons to biological ones
– Activation function as a model for nerve impulse action potential of biological neurons
– Types of nonlinear activation functions 
– Simple toy model of a deep learning neural network

• Back propagation as a deep neural network training algorithm
– Nested forward propagation 
– Chain rule of differentiation for connection strength (weight) modification  
– Modification of the connection strengths (weights) by back propagation 

2

Agenda



3

• The building block of the brain is the 
neuron, whose main components are 
illustrated in the graphic on the right.

• It is believed that the average human brain 
has about 86 billion neurons.

• Each neuron is estimated to be connected to 
about 7×10! synapses, connecting it to 
other neurons.

• The enormous computational abilities of the 
brain are due to its massive connectivity.

Biological Neuron



4

• Artificial intelligence systems that emulate the brain are 
formed from a limited set of interconnections between 
artificial neurons.  

• The simplest model of the artificial neuron is illustrated on 
the right.

• Inputs, 𝑥!, to the artificial neuron are equivalent to 
dendrites of the real neuron.

• Synapses are connections from (to) other neurons and are 
weighted by connection strengths, 𝑤!.

• Cell body is represented by an activation function that 
operates on the sum of the inputs it received before 
transmitting to the next neuron through the axon.

Artificial Neuron



• The essence of deep learning is inventing topologies for interconnected artificial 
neurons.

• If the network or topology has many layers between what is considered the input and the 
output, then one has a “deep” network.

• Figuring out the optimal strengths or weights of the interconnections is what training  
and, consequently learning is all about. 

• The most common topology of an artificial neural network is one where the signal 
propagates sequentially forward through the network; there are other types of networks.

5

Artificial Neural Network Topologies 



6

• The simple network illustrated in the graphic to the right has three 
main layers:
– An input layer,
– A hidden processing layer, and
– An output layer.

• This simple network structure is prototypical of all feed-forward 
deep neural networks.

• Input layer holds the data, where each neuron in the input layer 
represents a unique attribute of the dataset. 

• The hidden layer, positioned between the input and the output, 
does most of the data processing.

• The hidden layer is fully connected – meaning that each neuron in 
the hidden layer gets input from all previous neurons and transmits 
its output to every neuron in the next layer.

Simple Neural Network



• Each neuron in the hidden layer applies an activation function to all the inputs it receives before 
retransmitting its output to the next set of neurons.

• Activation of an artificial neuron is modeled to mimic the firing of an action potential in real biological 
neurons.

• The final layer of neuron(s) in a network is the output layer; it receives input from a previous hidden layer 
and can apply an activation before it outputs the signal.

• In a feed-forward networks, the input data is propagated forward through the network layer-by-layer to the  
final prediction layer of the network.

• The mathematical effect of a feed-forward network can be represented by  

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑓 𝑓 𝑤"
($)𝑥 𝑤&

(') Eqn. (4.1)

• In the Eqn. (4.1),  𝑓(. ) is  an activation function; there are several activation functions we will discuss.
7

Neural data processing 



• The simple artificial neural network we introduced performs certain basic tasks that are 
common to all networks like it; the tasks are enumerated as follows:
(1) Calculate weighted input to hidden layer (this involves multiplying the input, 𝑥, by the weight, 𝑤"

($));

(2) Apply an activation function to (or operate on) the input and pass the result to next layer;

(3) Compute the next layer’s input which is now the output of the hidden layer; this computation is
accomplished by multiplying the output of the hidden layer by the weight 𝑤&

(').

(4) Finally, the result is passed to the output layer, which may apply an activation function of its own
before outputting the result as the prediction of the simple network.

8

Essential Process Steps of a Neural Network



9

• Layers in a network are numbered sequentially from the input 
layer as ℓ = 1 to the output layer as ℓ = ℒ.

• Neurons (nodes) in layer ℓ of a network are indexed as           
𝑗 = 1, 2, …𝑁 for 𝑁 neurons. 

• Nodes (or neurons) in layer ℓ − 1 are indexed as                    
𝑘 = 1, 2, …𝐾 for 𝐾 neurons. 

• A weight connecting node 𝑗 in layer 𝑙 to node 𝑘 node in layer 
ℓ − 1 is denoted as 𝑤!"

(ℓ).

• The activation output of neuron 𝑗 in layer ℓ is denoted as 𝑎!
(ℓ).

• Input to a node 𝑗 in layer ℓ is the activated output from layer  
ℓ − 1.

Nomenclature for a Neuron in a Network

Total input to node 𝑗 in layer 𝑙 𝑖𝑠:

𝑧(
(ℓ) = A

*+,

-

𝑤(*
(ℓ)𝑎*

(ℓ.,)



10

• To perform processing tasks on the input so that 
a network gets results that matter,  one generally 
adds more neurons into each hidden layer of the 
network;

• The essential features of the power of more 
neurons in a layer can be appreciated from the 
network presented in the graphic to the left.

• As more neurons are added, reference to each 
becomes problematic unless we adhere to a 
notation for labeling or a strict nomenclature.

• The nomenclature was briefly discussed in 
general terms in the previous slide; the labeled 
edges and nodes will be explained in the next 
slide.

Additional Neurons in a Layer Enhance Computation



11

• The mathematical computation performed by the network 
illustrated on the right is:

𝑎!
(#) = 𝑓 𝑤!!

! 𝑥! + 𝑤!#
(!)𝑥# + 𝑏!

(!)

𝑎#
(#) = 𝑓 𝑤#!

(!)𝑥! + 𝑤##
(!)𝑥# + 𝑏#

(!)

𝑎%
(#) = 𝑓 𝑤%!

(!)𝑥! + 𝑤%#
(!)𝑥# + 𝑏%

(!)

𝑂(𝑤, 𝑏, 𝑥) = 𝑎!
(%) = 𝑓 𝑤!!

(#)𝑎!
(#) + 𝑤!#

(#)𝑎#
(#) + 𝑤!%

(#)𝑎%
(#) + 𝑏!

(#)

• We can also compactly write

𝑧!
($) = ∑(+,/ 𝑤!(

(,)𝑥( + 𝑏!
(,) and  𝑎!

(ℓ) = 𝑓 𝑧!
(ℓ)

Computation Performed by a Typical Neural Network



12

• A compact summary of the computational equations of 
our simple network, which again is shown on the left, 
are 

𝑧&
(') = ∑!()* 𝑤&!

())𝑥! + 𝑏&
()) and  𝑎&

(ℓ) = 𝑓 𝑧&
(ℓ) ;

• The activation function can be extended to act on 
vectors one element at a time 𝑓 𝑧), 𝑧', 𝑧+ =
𝑓 𝑧) , 𝑓 𝑧' , 𝑓(𝑧+), we can therefore say

𝑧(') = 𝑤())𝑥 + 𝑏 )

𝑎(') = 𝑓 𝑧(')

𝑧(+) = 𝑤(')𝑎(') + 𝑏(')
𝑂(𝑤, 𝑏, 𝑥) = 𝑎(+) = 𝑓(𝑧(+))

• Generally,  we will have
𝑧(ℓ,)) = 𝑤(ℓ)𝑎(ℓ) + 𝑏(ℓ)
𝑎(ℓ,)) = 𝑓 𝑧(ℓ,))

Streamlining Computational Network Process



13

• Another perspective of the prototype 
network we have been discussing is to  
consider its linear algebraic representation.  
This is illustrated below, where the same 
network is redrawn, and matrices that store 
input, weights and results of computations 
are shown below the network.  

• The output of  the  hidden layer is acted on 
by the activation  function before it is 
multiplied by the weights connecting the 
hidden layer to the  output.

• Similarly, the output  of the last neuron is 
acted on by the activation function before  it 
considered  as  the final network output.

Linear Algebra Simplification of Network Processes



• Biological neurons are known to fire off an electrical nerve impulse or action potential when 
communicating with other neurons.

• A biological neuron gathers all the inputs to its dendrites before firing the nerve impulse; this happens 
after a threshold of the sum of  all inputs is reached.

• One could imagine that for the simple neuron we have been discussing, when the impulse is fired, the 
output is 

𝑦 = 𝑏 + ∑!+,/ 𝑤!𝑥!;
• However, this is not what happens. The output is a nonlinear function of the total input.

• The nonlinear output means the neurons does perform some processing; to account for this in the artificial 
neuron, we use an activation function that nonlinearly operates on the sum of the inputs.

14

Nerve Impulse Activation in Biological Neuron



• In the spirit of continuing to emulate biology, several nonlinear functions are routinely 
used to squash the output of an artificial neuron.   

• The type of function chosen depends on the application context  and on the efficiency of 
the computation of the output.

• An activation function applied to the output of a neuron is expected to give a real-valued 
output of the total input. The out is typically squashed to the interval  0,1 .

• In a sense the nonlinear activation function normalizes the outputs of a neuron to 1 so 
that the the result of the operation of the activation function is between 0 and 1.

15

Nonlinear Activation Functions



16

• One of the earliest activation 
functions is the sigmoid function;  
this function takes the neuronal 
output  as input; for example,
𝑧 = 𝑏 + ∑G𝑤G𝑥G becomes the input 

to the sigmoid function,
𝑦 𝑧 = 𝑓 𝑧 = H

HIJ!"
Eqn. (4.2).

• A graphic of the sigmoid and its 
derivative are shown on the right.

Sigmoid Activation Function 



17

• Another activation function that was 
popular in the early days of deep 
learning was the hyperbolic tangent.

• The hyperbolic tangent limits its output 
between −1, 1 ; this function is 
mathematically described by

𝑦 𝑧 = 𝑓 𝑧 = tanh 𝑧 = ,
-./-./ − 1;   

Eqn. (4.3).

• A graph of the hyperbolic function and 
its derivative are illustrated on the left.

Hyperbolic Tangent Activation Function 



18

• The most popular activation function is the 
Linear Rectified Unit (ReLu);  for input

𝑧 = 𝑏 + ∑"𝑤"𝑥",
• ReLu is  defined as 

𝑦 𝑧 = 𝑓 𝑧 = .𝑧 if 𝑧 > 0
0 otherwise Eqn. (4.4).

• The derivative of ReLu is the step function, 
mathematically described by

𝑓# 𝑧 = .1 𝑧 ≥ 0
0 𝑧 < 0 Eqn. (4.5)

• A graphic illustration of ReLu is shown on 
the right.

Linear Rectified Unit function 



• The parametric ReLu function is a variation of the conventional ReLu function except 
that the it is not zero for 𝑧 < 0; it is instead a linear function with a slope that is 
adjustable as part of the learning process to arrive at the best “learned function.” Again, 
for our typical neuronal input of

𝑧 = 𝑏 + ∑0𝑤0𝑥0,
• Parametric ReLu is defined as

𝑦 𝑧 = 𝑓 𝑧 = 5𝑧 ≥ 0
𝛼𝑧 𝑧 < 0 Eqn. (4.6).

• The derivative of the parametric ReLu is 

𝑓1 𝑧 = 51 𝑧 ≥ 0
𝛼 𝑧 < 0 Eqn. (4.7).

19

Parametric Rectified Linear Unit



• This variant of the ReLu has an exponential component when its input values  are 
negative; as before, for 

𝑧 = 𝑏 + ∑0𝑤0𝑥0,
• The exponential ReLu is defined as

𝑦 𝑧 = 𝑓 𝑧 = 5 𝑧 𝑧 ≥ 0
𝛼 𝑒2 − 1 𝑧 < 0 Eqn. (4.8).

• The derivative of the exponential ReLu is 

𝑓1 𝑧 = 5 1 𝑧 ≥ 0
𝑓 𝑧 + 𝛼 𝑧 < 0 Eqn. (4.9).

20

Exponential ReLu



• Softmax is connected to logistic regression.  This function takes its inputs and normalizes 
the values to  follow a probability distribution whose total sum must be 1.  

• As usual for input given as 
𝑧 = 𝑏 + ∑0𝑤0𝑥0 Eqn. (4.10)

• One writes the softmax function as   

𝑦 𝑧 = 𝑓 𝑧 = 𝑃 𝑦 = 𝑗 𝑧 0 = //(0)

∑123
4 //5

(0) Eqn. (4.11).

• If we rewrite (4.10) as 𝑧 = 𝑤4𝑥4 +𝑤-𝑥- +⋯+𝑤5𝑥5 = ∑0645 𝑤0𝑥0 = 𝑤7𝑥 Eqn. (4.12).
• Note that we have used  𝑤4 = 𝑏 and 𝑥4 = 1 in (4.12) above.

21

Softmax Activation Function



• As can seen in Eqn. (4.12), we have used linear algebra to succinctly write the  input to softmax.  
This function  is useful in multiclass classification. It returns  a probability for a data point   for each 
individual class.

• When applied to a neural network, the output layer would have as many neurons as the number of  classes 
in the target; for two classes, there  would be  two output  neurons, and for three classes, there would be 
three output neurons.

• As an example, consider a network for classifying some things into three classes, meaning the are three 
output neurons; if the output neurons yield the output vector 1.2, 0.8, 0.4 , then when one applies 
softmax to this output vector,  the result is:

𝑃 𝑦 = 1 1.2 = &!.#

&!.#'&$.%'&$.&
= 0.47; 𝑃 𝑦 = 2 0.8 = &$.%

&!.#'&$.%'&$.&
= 0.32; 𝑃 𝑦 = 3 0.4 = &$.&

&!.#'&$.%'&$.&
= 0.21;

• Notice that the output  has been mapped to the vector 0.47, 0.32, 021 , whose components add to 1.

22

Action of Softmax



• As usual, we provide the input to the activation functions as
𝑧 = 𝑏 + ∑0𝑤0𝑥0 ≡ ∑0645 𝑤0𝑥0 as long as we define 𝑤4 = 𝑏 and 𝑥4 = 1.

• Then the Swish function would be  defined as

𝑓 𝑧 = 2
-./-/

Eqn. (4.13);

• This function is smooth and has outputs from 𝑧 = −∞ to 𝑧 = +∞.

• It is computationally as efficient as the ReLu but has better performance in very deep 
neural network models.

• The Swish function is a Google property  (they invented  and popularized its use).

23

Swish Activation Function



• Backpropagation is used to adjust the weights in a neural network in proportion to how 
much each weight contributes to the overall error (cost function).

• The process iteratively reduces each weight’s error until eventually the weights yield more 
accurate predictions.

• While forward propagation is a long series of nested equations, back propagation can be 
thought of as application of the chain rule of differentiation to the nested  equations.

• For example, for the nested function 

𝑓 𝑥 = 𝑎 𝑏 𝑐 𝑥 Eqn. (4.14).

• The derivative is 𝑓# 𝑥 = $%
$&
. $&
$'
. $'
$(
. $(
$)

.

24

Back Propagation 



• To find the derivative of a cost function with respect to any weight in  the network, one needs 
for a single neuron (i) the weighted input 𝑧 = 𝑤"𝑥" , (ii) the derivatives ⁄𝜕𝑧 𝜕𝑥" = 𝑤" and 
⁄𝜕𝑧 𝜕𝑤" = 𝑥", and  (iii) the activation function;

• In this example, we will use ReLu, 𝑅, which we defined earlier as
𝑅 = max(0, 𝑧)

𝑅# = .1 𝑧 ≥ 0
0 𝑧 < 0

• Let the cost function be: 𝐶 = $
%
>𝑦 − 𝑦 % Eqn. (4.15), where >𝑦 is the activated output  and 𝑦 the 

target. We  also get that ⁄𝜕𝐶 𝜕 >𝑦 = >𝑦 − 𝑦 .

• Cost is a nested function given as   𝐶 𝑅 𝑧 𝑤"𝑥" .

• By the chain rule, 𝐶# 𝑤" = &'
&(
. &(
&)
. &)
&*(

= >𝑦 − 𝑦 . 𝑅# 𝑧 . 𝑥"
25

Cost Function Derivatives



26

• The essential idea behind  backpropagation 
can be understood  from the simple network 
we have  been using as a stand-in for multi-
layer deep learning networks.  Relevant 
details are  now included in the simple 
network in the graphic on the left.

• Note that the outputs after the second- and 
third-layer neurons are the activated inputs 
from the previous layer.  This means 

ℎ = 𝑎+
(%)(𝑧+) and 𝑂 = 𝑎.

(!)(𝑧.) and of course 
𝑧+ 𝑥 = 𝑤+

(%)𝑥 and 𝑧. 𝑎+
(%) = 𝑤.

(!)𝑎+
(%).

Back Propagation in a Simple Network



• For the simple network to  learn, we must modify the connection weights to minimize the cost function 
after each forward propagation pass through the network until the cost is at its minimum.   With 𝛼 as the 
learning rate, weights in layer ℓ are modified iteratively according to

𝑤(ℓ) = 𝑤(ℓ) − 𝛼 01
02(ℓ) Eqn. (4.16).

• For our simple network, the cost function can be written as 

𝐶 = ,
$
𝑎&
(') − 𝑦

$
Eqn. (4.17).

• We have introduced a factor of ⁄1 2 for the convenience of canceling out the 2 from differentiation of of 
the  cost function.

• The derivatives of the cost function with the respect to 𝑤3
(') and 𝑤"

($) are  

01
02$

(%) =
01
04$

(%) .
04$

(%)

05$
. 05$
02$

(%) = 𝑎&
(') − 𝑦 . 04$

(%)

05$
. 𝑎"
($) Eqn. (4.18).

01
02&

(') =
01
04$

(%) .
04$

(%)

05$
. 05$
04&

(') .
04&

(')

05&
. 05&
02&

' = 𝑎&
(') − 𝑦 . 04$

(%)

05$
. 𝑤&

(') . 04&
(')

05&
. 𝑥 Eqn. (4.19).

27

Cost Function Dependence on Connection Weights 



• In our simple network, the derivatives of the cost  function with respect to 𝑤C
(D) and 

𝑤E
(,) in Eqn. (4.18) and (4.19) contain common shared terms (high-lighted in blue). If 

we had a network with more layers than the three layers, we would find this pattern 
repeated for other derivatives with respect to the weights.  This offers an opportunity to 
NOT keep recalculating the common shared terms each weight deeper into the network 
(from  the output).  

• The savings in time and effort  for not repeating the calculations goes by the term 
memoization; this is a valid computer science term which means do not recompute the 
same result over and over.

28

Memoization



29

• The general network depicted in the graphic on 
the right is representative of typical practical 
networks that can be used for some machine 
learning task.

• The cost function is the sum of all the losses 
summed over all the output nodes 𝑗; thus,

𝐶 = ,
$
∑(+,6 𝑎(

7 − 𝑦!
$

Eqn. (4.20).

• Suppose we want to adjust the strength (weight) 
of connection between node 2 in layer 𝐿 − 1 and 
node 1 in layer 𝐿 (green connection); our first 
task is to compute the derivative of the cost 
function with respect to the weight of interest 
which in this case is  ⁄𝜕𝐶 𝜕𝑤,$7 .

Back Propagation in a General Network



• We know that the cost function in (4.20) is a function of 𝑎,
(7), which in turn is a function of 𝑧,

(7), 
which itself is a function of 𝑤,$

(7). As we have seen before, this means the cost function can be 
written as

𝐶 = 𝐶 𝑎,
(7) 𝑧,

(7) 𝑤,$
(8) Eqn. (4.22).

• By the chain rule of differentiation, we  then have 

01

02)*
(+) =

01

04)
(+)

04)
(+)

05)
(+)

05)
(+)

02)*
(+) Eqn. (4.23).

• Each term in (4.23) can be calculated separately, thus
𝜕𝐶

𝜕𝑎!
(,) =

𝜕

𝜕𝑎!
(,)

1
2H-.!

/
𝑎-
(,) − 𝑦0

#
=
1
2

𝜕

𝜕𝑎!
(,) 𝑎!

(,) − 𝑦!
#
+ 𝑎#

(,) − 𝑦#
#
+⋯ = 𝑎!

(,) − 𝑦! Eqn. 4.24 .

30

Nested Derivative Calculations



• The second term of (4. 23), for each node 𝑗 in layer 𝐿 we have 
𝑎/
(0) = 𝜉0(𝑧/

(0))

• For the node of interest 𝑗 = 1 in layer 𝐿, we have 𝑎$
(0) = 𝜉(0) (𝑧$

(0)) so that

&1)
(+)

&))
(+) =

&

&))
(+) 𝜉(0)(𝑧$

(0)) = &2(+)())
(+))

&))
(+) Eqn. (4.25).

• For the third term in (4.23), we notice that  for each node 𝑗 in layer 𝐿, we have

𝑧/
(3) = ∑45$6 𝑤/4

(0)𝑎4
(07$).

• We are interested in the case for 𝑗 = 1, thus
05(

())

02('
()) =

0
02('

()) ∑*+,6 𝑤,$
(7)𝑎*

(7) = 0
02('

()) 𝑤,,
(7)𝑎,

(7.,) + 𝑤,$
(7)𝑎$

(7.,) + 𝑤,'
(7)𝑎'

(7.,)… = 𝑎$
(7.,) Eqn. (4.26).

31

Nested Derivative Calculations … 



• Finally, we collect all the partial derivatives from (4.24) to (4.26) to write 

&'

&*)*
(+) = 𝑎$

(0) − 𝑦$
&2(+)())

(+))

&))
(+) 𝑎%

(07$) Eqn. (4.27).

• For all training samples, 𝑁, we are ultimately interested in the average derivative, which is
&'

&*)*
(+) =

$
8
∑"5$8 &'(

&*)*
(+) Eqn. (4.28).

• Now that we have the derivative of the cost function with respect to the the weight 𝑤$%
(0), if we 

wanted to adjust the value of this weight, we must follow the rule from (4.16) which requires us 
to make the following adjustment  

𝑤$%
(0) = 𝑤$%

(0) − 𝛼 &'

&*)*
(+) Eqn. (4.29).

32

Nested Derivative Calculations … 



• The effect of the interconnection weight 𝑤,,
(NO-) (high-lighted in red in our general 

network graphic on slide 29), which is a bit deeper in the network from the output side 
of the network can be calculated by first determining how the cost function derivative 
changes with this weight, thus

PQ
R..
(6-7) =

PQ
PS.

(6-7)
PS.

(6-7)

P2.
(6-7)

P2.
(6-7)

PR..
(6-7) Eqn. (4.30).

• This looks like what we have already done, but it is not!  This is because for a node 𝑗 in 
layer 𝐿, the loss depends on 𝑎T

(N), which depends on 𝑧T
(N).  But 𝑧T

(N) depends on all 
weights connected to node 𝑗 from the 𝐿 − 1 layer as well as the all the activation outputs 
of layer 𝐿 − 1. We see then  that 𝑧T

(N) depends on  𝑎,
(UO-).  Thus

PQ
PS.

(6-7) = ∑T6-V PQ
PS1

(6)
PS.

(6)

P21
(6)

P21
(6)

PS.
(6-7) Eqn. (4.31)

33

Effect of Weights Deeper in the Network



• To compute  (4.31), we need to find 

P21
(6)

PS.
(6-7) , but for each node 𝑗 in layer 𝐿 we have

𝑧T
(N) = ∑56-V 𝑤T5

(N)𝑎5
(NO-) Eqn. (4.32), hence

05*
())

04'
()+() =

0
04'

()+() ∑*+,/ 𝑤(*
(7)𝑎*

(7.,) = 0
04'

()+() 𝑤(,
(7)𝑎,

(7.,) + 𝑤($
(7)𝑎$

(7.,) +⋯ = 𝑤($
(7) Eqn. (4.33).

• Now we can write 

01
04'

()+() = ∑(+,/ 01
04*

())

04*
())

05*
())

05*
())

04'
()+() = ∑(+,/ 𝑎(

(7) − 𝑦(
04*

())

05*
()) 𝑤($

(7) Eqn. (4.34).

34

Effect of Weights Deeper in the Network



• The average derivative for all training samples can now be written as 
PQ

PS.
(8-7) =

-
V
∑06-V PQ0

PS.
(6-7) Eqn. (4.35).

• All the terms in Eqn. (4.31) have now been determined and one can finally proceed with 
the computation of  cost derivative with the weight 𝑤,,

(NO-).  Thus
PQ

PR..
(6-7) =

PQ
PS.

(6-7)
PS.

(6-7)

P2.
(6-7)

P2.
(6-7)

PR..
(6-7) Eqn. (4.36).

• Although we have only shown the computation of derivatives for two weights, the 
principle is clear; one begins at the output and progresses deeper into the network until 
the first weight that connects the inputs to the first hidden layer is reached.

• It should also now be obvious why training a deep neural network is time-consuming.

35

Effect of Weights Deeper in the Network…



• To prevent deep learning networks from overfitting the training dataset, it is common to constrain the 
range of weights the network can learn.  This is done by writing the cost function (in our case, the 𝐿2) as:

𝐶 𝑤, 𝑏 =
1
𝑛
A
!+,

6
1
2
𝑎!
(7) 𝑥! − 𝑦!

$
+
𝜆
2
𝑤(*
(ℓ) $

• The last term in the equation above penalizes the cost function, with 𝜆 called the weight decay parameter, 
which controls the relative importance of the two terms in the cost function expression above.

• For a reference to this topic and most of  deep learning, please see (free online book):

“Deep Learning,”  I. Goodfellow, Y. Bengio, and A. Courville (MIT Press 2016).
https://www.deeplearningbook.org/

36

Regularization and overfitting 

https://www.deeplearningbook.org/


• All our  examples and discussions so far have focused on using the “mean squared 
error” or the MSE expression as the cost function. This function is also called the 
𝐿2 cost function. 

• You should be aware there are other cost functions; a few are listed below:
1. Cross-entropy (Bernoulli negative log likelihood)
2. Hellinger distance
3. Kullback-Liebler Divergence
4. Itakura-Saito Distance 

• The choice on which one is best depends on the application at hand.  The L2 cost 
function just happens to be the simples and most convenient.

37

On Cost (Objective) Functions



• We introduced the concept of artificial neurons  and its relationship to the biological one
– Discussed construction of  multi-layered artificial neural networks
– Nonlinear activation functions

• Back propagation as a training model for artificial neural networks 
– Chain rule of differentiation and nested functions
– Connection strength (weight) modification  during network training  

38

Summary


